بررسی ادواری کربن آلی خاک در دشت خوزستان و ارایه راهکارهای ترویجی

نوع مقاله: علمی ترویجی

نویسنده

استادیار پژوهش مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی صفی آباد دزفول،سازمان تحقیقات، آموزش و ترویج کشاورزی.

چکیده

 
بهبود کیفیت خاک برای توسعه پایدار کشاورزی و تامین امنیت غذایی جمعیت رو به رشد موضوعی انکار ناپذیر است. کربن آلی خاک عاملی تعیین کننده بر ویژگی­های شیمیایی، فیزیکی و زیستی خاک و نیز کمیت و کیفیت عملکرد است. بررسی داده­ها نشان می­دهد که کربن آلی خاک های شمال خوزستان به واسطه اعمال مدیریت­های نامناسب سیر نزولی داشته، به طوری که مقدار کربن آلی خاک در اغلب اراضی کمتر از یک درصد می­باشد. این در حالی است که حدود 60 درصد خاک­های کشور دارای کربن آلی زیر یک درصد هستند. آگاهی کشاورزان به نقش کربن آلی خاک در اراضی، آنها را قادر می­سازد که بتوانند تصمیم­های درستی برای پذیرش عملیات مدیریتی مناسب برای بالا بردن حاصلخیزی خاک، که مستلزم بکارگیری مدیریت خاک و محصول نظیر مدیریت تلفیقی حاصلخیزی خاک و تغذیه گیاهی در رویکردی جامع نگر و مداوم است، بگیرند. خاطر نشان می­شود میزان کربن آلی را می توان با اعمال ضریبی (724/1 ) به تعداد ماده آلی خاک تبدیل نمود. 

کلیدواژه‌ها


عنوان مقاله [English]

Periodic Study of Soil Organic Carbon in Plains of Khuzestan and Providing Extensions

نویسنده [English]

  • kamran mirzashahi
Assistant professor, Research Center and Agricultural Education and Natural Resources of safiabad, Dezful - Agricultural Research, Education and Extension Organization.
چکیده [English]

Improve soil quality for sustainable agricultural development to ensure food security for a growing population are the subject undeniable. Soil organic carbon is a decisive factor in the soil (chemical, physical and biological properties and improving the quality and quantity of yield. Studies show that soil organic carbon in the northern Khuzestan declined due to inappropriate management practices, so that based on the latest results available ,the soil carbon content in 100% of soils is less than one percent; while the national average is 60 percent. Farmers' awareness of the role of soil organic carbon in their lands enables them to make the right decisions to adopt appropriate management practices to increase soil fertility, which require the use of soil and product management such as integrated soil fertility and plant nutrition management in a comprehensive and continuous approach. It is noted that organic carbon can be called by applying a coefficient (1.724) organic matter.

کلیدواژه‌ها [English]

  • land use
  • Organic carbon
  • Soil management
  1. بی­نام. 1341.گزارش برنامه آزمایش کودهای شیمیایی در خوزستان. شرکت عمران و منابع نیویورک و موسسه عمران خوزستان.
  2. سعادت، س. و ح. رضایی. 1393. پایش کیفیت خاک­های کشاورزی. گزارش سالیانه طرح. موسسه تحقیقات خاک و آب.
  3. سماوات ، س. 1386. گزارش وضعیت ماده آلی خاک­های کشور. موسسه تحقیقات خاک و آب، کرج، ایران.
  4. طاهرزاده، م. ح.، ا. حسنی، ج. بنی نعمه، م. ح. بنایی، ر. ع. ابراهیم پور و و. ر. قاسمی. 1382. شناسایی و طبقه­بندی خاک­های خوزستان. هشتمین کنگره علوم خاک ایران. 12-9 شهریور، رشت.
  5. محمدی،ب. 1385. اصول روش تحقیق کیفی(نظریه مبنایی). پژوهشگاه علوم انسانی و مطالعات فرهنگی، تهران.
  6. میرزاشاهی، ک. 1385. بررسی وضعیت عناصر غذایی اصلی در خاک­های شمال خوزستان. فصلنامه آموزشی ترویجی کارون سبز، سال پنجم، شماره 14. سازمان جهاد کشاورزی استان خوزستان.
  7. Anon. 1982. Organic matter and soil productivity in the near east. FAO. Soil Bulletin, No. 45.
  8. Balesdent, J., C. Chenued and M. Balabane. 2000. Relationships of soil organic matter dynamic to physical protection and tillage. Soil and Tillage Research.53: 215- 230.
  9. Barber, S. A. 1984. Soil Nutrient Bioavailability.John Wily and Sons Pub. New York.
  10. Bhogal, A., F. A. Nicholson and B. J. Chambers. 2006. Manure organic carbon inputs and soil quality. In: Petersen, S. O. [ed.] Proceedings of the 12th International Conference of the FAO RAMIRAN: Technology for Recycling of Manure and Organic Residues in a Whole-Farm Perspective, DIAS report no. 122, Aarhus, Denmark, Danish Institute of Agricultural Sciences, pp. 33-35.
  11. Bhogal, A., F. A. Nicholson and B. J. Chambers. 2009. Organic carbon additions – effects on soil bio-physical and physico-chemical properties. European Journal of Soil Science. 60: 276- 286.
  12. Bhogal, A., T. Boucard, B. J. Chambers, F. A. Nicholson and R. Parkinson. 2008. Road Testing of ‘Trigger Values’ for Assessing Site Specific Soil Quality. Phase 2 – Other Soil Quality Indicators. Science Report – SC050054SR2. Environment Agency, Bristol, UK.
  13. Bhogal, A., B. J. Chambers,   A. P.,  Whitmore and D. S. Powlson. 2008. The effects of reduced tillage practices and other material additions on the carbon content of arable soils. Scientific Report for Defra, Project SP0561.
  14. Bidwell, O. W. 1982. Soil fertility and organic matter as critical components of
  15. production systems. American Journal of Alternative Agriculture.3: 91-92.  
  16. Blomback, K, H.  Eckersten and E. Lewan .2003. Simulations of soil carbon and nitrogen dynamics during seven years in a catch crop experiment. Agricultural Systems. 76: 95-114
  17. Brown, S.  and  A. Lugo. 1990. Effect of forest cleaning and succession of the carbon and nitrogen content of soils in Puerto rico and US Virgin Island. Plant and Soil. 124: 53- 64.
  18. Campbell, C. A.,  A. J. Vanden Bygaart,  B. Grant, R. P. Zentner, B. G. McConkey, R., Lemke, E. G. Gregorichl and M. R. Fernandez .2007. Quantifying carbon sequestration in a conventionally tilled crop rotation study in southwestern Saskatchewan, Canadian  Journal of Soil Science. 87:23–38
  19. Coleman, K.W., D. S. Jenkinson, J. G. Crocker, P. R. Grace, J. Klir,  M. Korschens, P. R. Poulton and D. D. Richter. 1997. Simulting trends in soil organic carbon in long-term experiments using RothC-26.3. Geoderma. 81: 29-44.
  20. Cooperband, L. 2002. Building soil organic matter with organic amendments. Center for Integrated Agriculture System. University of Wisconsin-Madison.
  21. Davis, J. G. and C. R. Wilson. 2005. Choosing a soil amendment. Clorado State University Extension.
  22. Dick, W.A. and   E. G.  Gregorich. 2004. Developing and maintaining soil organic matter levels. In: Managing Soil Quality Challenges in Modern Agriculture. (Eds. P. Schjonning, S. Elmholt & B.T. Christensen)., CABI Publishing, Wallingford, Oxen. pp.103-12.
  23. Dick, W.A. and J.T. Durkalaski. 1997. No-tillage production agriculture and carbon sequestration in a typic fraguidalf soil of northeastern Ohio.  p. 59-71. In R. Lal (eds) Advances in Soil Sciences: Management of Carbon Sequestration in Soil.  Boca Raton, FL.
  24. Gilliam, J.W. and G.D. Hoyt. 1987. Effect of conservation tillage on fate and transport of nitrogen. p. 217-240. In T.J. logan et al. 9eds) Effects on conservation tillage on groundwater quality: Nitrates and pesticides.  Lewis Publ., Inc., Chelsea, MI.
  25. Jagadamma, S.,  R.  Lal,  R. G. Hoeft,  E. D. Naffiger and E. A. Adee. 2008. Nitrogen fertilization and cropping system impacts on soil properties and their relationship to crop yield in the central corn belt, USA, Soil and Tillage Research. 98: 120–129.
  26. Jenny, H. 1941. Factors of soil formation. McGraw-Hill, New York, NY.
  27. Johnston, A.E., S. P. McGrath, P. R. Poulton and P. W. Lane. 1989. Accumulation and loss of nitrogen from manure, sludge and compost: long-term experiments at Rothamsted and Woburn. In: Nitrogen in Organic Wastes Applied to Soils. J.A.A. Hansen & K. Henriksen (Eds). Academic Press, London. pp. 126-139.
  28. Kern, J.S. and M.G. Johnson. 1993. Conservation tillage impact on national soil and atmospheric carbon levels. Soil Science Society of American Journal.  57:200-210.
  29. King, J.A.,  R. I. Bradley, R. Harrison, and A. D. Carter. 2004. Carbon sequestration and saving potential associated with changes to the management of agricultural soils in England. Soil Use and Management. 20: 394-402.
  30. Krul, E. S.,  J. O. Skjemsted and J. A. Baldock. 2004. Function of soil organic matter and the effect on soil properties. CSIRO.
  31. Lal,  R. 2015. On Sequestering Carbon and Increasing Productivity by Conservation Agriculture. Journal of  Soil and Water Conservation. in press.
  32. Lal, R. and B. A. Stewart (Ed). 2015. Soil management of smallholder agriculture. CRC Press. Taylor and Francis Group. Pp 420.
  33. Loveland, P and J. Webb .2003. Is there a critical level of organic matter in the agricultural soils of temperate regions: a review. Soil and Tillage Research. 70: 1-18.    
  34. Oorts, K., H. Bossuyt, J. Labreuche R. Merckx  and B. Nicolardot. 2007. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France. European Journal of Soil Science 58: 248-259.
  35. Orzolek, M. D. 2009. Organic matter application- Can you apply too much?. Virginia State University.
  36. Page, A. L., R. H. Miller and D. R. Keeney. 1982. Methods of Soil Analysis, Part 2, chemical and Microbiological Properties. American Society of agronomy, Inc. soil Science of America, Inc. Madison, Wisconsin, USA.
  37. Rajan, K.; Natarajan, A.; Kumar, K.; Badrinath, M.; Gowda, R.  2010. Soil organic carbon—the most reliable indicator for monitoring land degradation by soil erosion. Current Science. 99:823–827.
  38. Rasmussen, P.E., R. R. Allmaras, C. R. Rohde and N. C. Jr Roager. 1980. Crop residue influences on soil carbon and nitrogen in a wheat-fallow system. Soil Science Society of America Journal. 44: 596-600.
  39. Singh, Y., B. Singh, J. K. Ladha, C. S. Khind, R. K. Gupta, O. P. Meelu and E. Pasuquin. 2004. Long-term effects of organic inputs on yield and soil fertility in the rice-wheat. Soil Science Society of American Journal. 68:84665-853.
  40. Singh, B. R., R. C. Dalal and R. Lal. 2006. Integrated nutrient management. Encyclopedia of Soil Science.
  41. Singh, K. P.,  A. Suman,  P. N. Singh and M.  Lal. 2007. Yield and soil nutrient balance of a sugarcane plant-ratoon system with conventional and organic nutrient management in sub-tropical India, Nutrent Cycling in Agroecosystems. 79: 209–219.
  42. Smith, P., K. W. T. Goulding, K. A. Smith, D. S. Powlson, J. U. Smith P. Falloon and  K. Coleman. 2000a. Including trace gas fluxes in estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management. 16: 251-259.
  43. Smith, P., D. S. Powlson, J. U. Smith, P. Falloon, K. Coleman. 2000b. Meeting the UK’s climate change commitments: options for carbon mitigation on agricultural and. SoilUse and Management.16: 1-11.
  44. Smith, P., R. Milne, D. S. Powlson, J. U. Smith, P. Falloon and K. Coleman. 2000c. Revised estimates of the carbon mitigation potential of UK agricultural land. Soil Use and Management. 16: 293-295.
  45. Smith, P., O. Andren, T. Karlsson, P. Perala, K. A. Regina, M. Rounsevell and B. Van Wesemael. 2005. Carbon sequestration potential in European croplands has been overestimated. Global Change Biology.11, 2153-2163.
  46. Steiner, K. 2002. Crop residue management and cover crops. African Conservation Tillage Network. Information Series No.3.
  47. Stevenson, F.G. 1994. Humus Chemistry. John Wily and Sons Pub. New York.
  48. USDA Natural Resources Conservation Services. 1996. Soil quality indicators: Organic matter. Soil Quality Information Sheet.
  49. USDA  Natural Resources Conservation Services. 2003. Managing soil organic matter. Technical Note No.5. WWW.soils.usda.gov.