رفتار و سرنوشت نانوذرات در خاک

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز، آذربایجان شرقی، ایران

2 دانشیار گروه علوم و مهندسی خاک دانشگاه تبریز

چکیده

از آنجایی­که نانوذرات فلزی به­طورگسترده در صنعت فناوری نانو استفاده می­شود، این احتمال وجود دارد که نانوذرات از مسیرهای مختلف به­ویژه از طریق لجن فاضلاب وارد محیط خاکی شوند. پژوهش حاضر یک نمای کلی از بررسی سرنوشت و انتقال نانوذرات فلزی در خاک ارائه می­کند. ویژگی­های نانوذرات (به­عنوان مثال، اندازه، شکل، بار سطحی) و خاک (برای مثال pH، قدرت یونی و مقدار رس) فرآیندهای فیزیکی و شیمیایی آنها را تحت تاًثیر قرار داده و منجر به حل­پذیری نانوذرات و تجمع آنها شده است. علاوهبر این، برخی از این برهمکنشهای خاص بهویژه نقش مواد آلی محلول در جذب مستقیم نانوذرات توسط ریزجانداران خاکزی و فراهمی اشکال مختلف نانوذرات مهندسی شده به‌ندرت بررسی شده‌اند. رفتار نانوذرات در خاک، تحرک و زیست‌فراهمی آنها برای ریزجانداران خاکزی و ریشه گیاهان را کنترل می‌کند. اطلاعات اندکی در مورد تأثیر فرآیندهای حل­پذیری و تجمع نانوذرات بر شدت سمیت آنها وجود دارد و در بسیاری از موارد بررسی‌های موجود نتایج متفاوتی داشته و تفسیر فرآیندهای مؤثر را غیرممکن ساخته است.

کلیدواژه‌ها


عنوان مقاله [English]

Behavior and fate of nanoparticles in soil

نویسندگان [English]

  • Masomeh Mahdizadeh 1
  • Nosratolah Najafi 2
1 Ph.D Student, Soil Science Department, Faculty of Agriculture, University of Tabriz, East Azerbaijan, Iran.
2 Associate Professor of Soil Science, Faculty of Agriculture, University of Tabriz, East Azerbaijan, Iran.
چکیده [English]

 
Since metallic nanoparticles are widely used nowadays in industrial applications of nanotechnology, there is every possibility that they find their way into soils, especially through sewage sludge. Nanoparticle properties (e.g., size, shape, and surface charge) and those of the soil environment (e.g., pH, ionic strength, and clay content) affect the physical and chemical processes that lead to the dissolution, aggregation, and agglomeration of nanoparticles. This is while some of these specific interactions, particularly the roles played by different DOMs in the direct uptake of nanoparticles by soil organisms and the availability of different forms of engineered nanoparticles, have been scarcely ever investigated. Nanoparticulate mobility and bioavailability to microorganisms control their behavior in soil. However, little is known about the effects of dissolution, aggregation, and agglomeration processes on the toxicity of nanoparticles. Moreover, conflicting results have been reported by most studies, making it difficult to derive a clear picture of the processes involved. The present study provides an overview of the fate and transport of metal nanoparticles in soil.

کلیدواژه‌ها [English]

  • Bioavailability
  • Nanoparticles
  • Particle size
  • Surface charge
  1. Amendola, V., S. Polizzi., and M. Meneghetti. 2007. Free silver nanoparticles synthesized by laser ablation in organic solvents and their easy functionalization. Langmuir. 23:6766–6770.
  2. Antisari, V., S. Carbone., A. Gatti., G. Vianello., and P. Nannipieri. 2013. Toxicity of metal oxide (CeO2, Fe3O4, SnO2) engineered nanoparticles on soil microbial biomass and their distribution in soil. Soil Biology & Biochemistry. 60:87–94.
  3. Baalousha, M., A. Manciulea., S. Cumberland., K. Kendall., and J.R. Lead. 2008b. Aggregation and surface properties of iron oxide nanoparticles: influence of pH and natural organic matter. Environmental toxicology and chemistry. 27: 1875-1882.
  4. Baalousha, M., N.A. Alexa., E. Cieslak., and J.R. Lead. 2008a. Transport mechanisms of carbon nanotubes in the natural aquatic environment. Environmental Science and Technology (Submitted).
  5. Balbu, J., A. Maynard., V. Colvin., V. Castranova., G. Daston., R. Denison., K. Dreher., P. Goering., A. Goldberg., K. Kulinowski., N. Monteiro-Riviere., G. Oberdorster., G. Omenn., K. Pinkerton., K. Ramos., K. Rest., J. Sass., E. Silbergeld., and B.A. Wong. 2007. Meeting Report: Hazard assessment for nanoparticles, Report from an Interdisciplinary Workshop. Environ Health Perspect. 115:1654–1659.
  6. Bames, R.J., O. Riba., M.N. Gardner., T.B. Scott., S.A. Jackman., and I.P. Thompson. 2010. Optimization of nano-scale nickel/iron particles for the reduction of high concentration chlorinated aliphatic hydrocarbon solutions. Chemosphere.79:448–454.
  7. Banfield, J.F., and H. Zhang. 2001. Nanoparticles in the Environment. In ‘‘Nanoparticles and the Environment’’ (J. F. Banfield and A. Navrotsky, Eds.), Mineralogical Society of America, Washington, DCChapter 1. Pp: 1–58.
  8. Benn, T.M., and P. Westerhoff. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol. 42:4133–4139.
  9. Borm, P., F.C. Klaessig., T.D. Landry., B. Moudgil., J. Pauluhn., K. Thomas., R. Trottier., and S. Wood. 2006. Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences. 90:23–32.
  10. Brant, J., H. Lecaotnet., and M.R. Wiessner. 2005. Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. Journal of Nanoparticle Research.  7:533–545.
  11. Brown, G.E., V.E. Henrich., W.H. Casey., D.L. Clark., C. Eggleston., A. Felmy., D.W. Goodman., M. Gratzel., G. Maciel., M.I. McCarthy., K.H. Nealson., and D.A. Sverjensky. 1999. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Journal of Colloid and Interface Science. 241:317–326.
  12. Buffle, J., K.J. Wilkinson., S. Stoll., M. Filella., and J. Zhang., 1998. A generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environmental Science and Technology. 32: 2887–2899.
  13. Casals, E., E. Gonzalez., and V. Puntes. 2012. Reactivity of inorganic nanoparticles in biological environments: insights into nanotoxicity mechanisms. Journal of Physics D: Applied Physics. 45: 443001.
  14. Chen, C., and X. Wang., 2006. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research.  45:9144–9149
  15. Chen, K.L., and M. Elimelech. 2006. Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir. 22:10994–11001.
  16. Chen, K.L., S.E. Mylon., and M. Elimelech. 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environmental Science and Technology. 40:1516-1523.
  17. Chen, K.L., S.E. Mylon., and M. Elimelech. 2007. Enhanced aggregation of alginate-coated iron oxide (Hematite) nanoparticles in the presence of calcium, strontium, and barium cations. Langmuir. 23:5920–5928.
  18. Cheng, X., A.T. Kan., and M.B. Tomson. 2004. Naphthalene adsorption aqueous C60 fullerene. Journal of Chemical & Engineering Data.  49:675–683.
  19. Chowdhury, I., D.M. Cwiertny., and S.L. Walker. 2012. Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environmental Science and Technology. 46:6968-6976.
  20. Contreras, S.M., L.D. Alvarez., and L. Dendooven. 2008. Removal of polycyclic aromatic hydrocarbons from soil amended with biosolid or vermicompost in the presence of earthworms (Eisenia fetida). Soil Biology and Biochemistry. 40:1954-1959.
  21. Cornelis, G., B. Ryan., M.J. McLaughlin., J.K. Kirby., D. Beak., and D. Chittleborough. 2011. Solubility and batch retention of CeO2 nanoparticles in soils. Environmental Science and Technology. 45:2777–2782.
  22. Cornelis, G., J.K. Kirby., D. Beak., D. Chittleborough., and M.J. McLaughlin. 2010. A method for determination of retention of silver and cerium oxide manufactured nanoparticles in soils. Journals of Environmental Chemistry. 7:298–308.
  23. Cui, W., W. Lu, Y. Zhang, G. Lin, T. Wei., and L. Jiang. 2010. Gold nanoparticle ink suitable for electric-conductive pattern fabrication using in ink-jet printing technology. Colloids Surf A. Physicochem Eng Aspects. 358: 35–41.
  24. Darlington, T.K., A.M. Neigh., M.T. Spencer., O.T. Guyen, and S.J. Oldenburg. 2009. Nanoparticle characteristics affecting environmental fate and transport through soil. Environmental Toxicology and Chemistry.  28:1191–1199.
  25. David, C.A., J. Galceran., C. Reycastro., J. Puy., E. Companys., J. Salvador., J. Monne., R. Wallace., and A. Vakourov. 2012. Dissolution kinetics and solubility of ZnO nanoparticles followed by AGNES. Journal of Physical Chemistry C. 116:11758-11767.
  26. Dunphy Guzman, K.A., M.P. Finnegan., and J.F. Banfield. 2006. Influence of surface potential on aggregation and transport of titania nanoparticles Environmental Science and Technology 40:7688–7693.
  27. Dwivedi, A.D., S.P. Dubey., M. Sillanpaa., Y.N. Kwon., C. Lee., and R.S. Varma. 2015. Fate of engineered nanoparticles: implications in the environment. Coordination Chemistry Reviews. 287: 64–78.
  28. Fang, J., X. Shan., B. Wen., J. Lin., and G. Owens. 2009. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns. Environmental Pollution. 157:1101–1109.
  29. Fayaz, M., K. Balaji., M. Girilal., P.T. Kalaichelvan., and R. Venkatesan. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate filma for vegetable and fruit preservation. Journal of Agricultural and Food Chemistry. 57: 6246-6252.
  30. Finnegan, M.P., Z. Hengzhong., and J.F. Banfield. 2007. Phase stability and transformation in titania nanoparticles in aqueous solutions determined by surface energy. The Journal of Physical Chemistry C. 111:1962–1968.
  31. French, R.A., A.R. Jacobson., B. Kim., S.L. Isley., R.L. Penn. and P.C. Baveye. 2009. Influence of ionic strength, pH, and cation valence on aggregation kinetics of titanium dioxide nanoparticles. Environmental Science and Technology. 43:1354–1359.
  32. Fukuski, K., and T. Sato. 2005. Using a surface complexation model to predict the nature and stability of nanoparticles. Environmental Science and Technology. 39:1250–1256.
  33. Ghosh, S., H. Mashayekhi., B. Pan., P. Bhowmik., and B. Xing. 2008. Colloidal behavior of aluminum oxide nanoparticles as affected by pH and natural organic matter. Langmuir. 24:12385–12391.
  34. Giammar, D.E., C.J. Maus., and L. Xie. 2007. Effects of particle size and crystalline phase on lead adsorption to titanium dioxide nanoparticles. Environmental Engineering Science.  24:85–95.
  35. Giasuddin, A.B., S.R. Kanel., and H. Choi. 2007. Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science and Technology. 41:2022–2027.
  36. Gimbert, L.J., R.E. Hamon., P.S. Casey., and P.J. Worsfold. 2007. Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Journals in Environmental Chemistry. 4:8–10.
  37. Handy, R., F. von der Kammer., J. Lead., M. Hassellov., R. Owen., and M. Crane. 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology. 17:287–314.
  38. Handy, R.D., and B.J. Shaw. 2007. Toxic effects of nanoparticles and nanomaterials: Implications for public health, risk assessment and the public perception of nanotechnology. Health Risk Soc.9:125–144.
  39. Harrison, E.Z., S.R. Oakes., M. Hysell., and A. Hay. 2006. Organic chemicals in sewage sludges. Science of the Total Environment. 367:481-497.
  40. Hassellov, M., J. Readman., J. Ranville., and K. Tiede. 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 17:344–361.
  41. He, X., Y.S. Kuang., YY. Li., H.F. Zhang., YH. Ma., W. Bai., ZY. Zhang., ZQ Wu., Y.L. Zhao., and ZF. ChaiI. 2012. Changing exposure media can reverse the cytotoxicity of ceria nanoparticles for Escherichia coli. Nanotoxicology. 6:233-240.
  42. Hiemstra, T., and W.H. Vanriemsdijk. 1990. Multiple activated complex dissolution of metal (hydr) oxides: a thermodynamic approach applied to quartz. Journal of Colloid and Interface Science. 136:132-150.
  43. Hiemstra, T., J. Antelo., A.M. Vanrotterdam., and W.H. Vanriemsdijk. 2010b. Nanoparticles in natural systems II: The natural oxide fraction at interaction with natural organic matter and phosphate. Geochimica Et  Cosmochimica Acta. 74:59-69.
  44. Hiemstra, T., J. Antelo., R. Rahnemaie., and W.H. Vanriemsdijk. 2010a. Nanoparticles in natural systems I: The effective reactive surface area of the natural oxide fraction in field samples. Geochimica Et Cosmochimica Acta. 74:41-58.
  45. Hu, C.W. 2012. Aggregation and dissolution of ZnO nanoparticles in solutions. Asian Journal of Chemistry. 24:3045-3048.
  46. Hyung, H., J.D. Fortner., J.B. Hughes., and J.H. Kim. 2007. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environmental Science and Technology. 41:179–184.
  47. Jackben-Moshe, T., I. Dror., and B. Berkowitz. 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere. 81:387–393.
  48. Jekel, M.R. 1986. The stabilization of dispersed mineral particles by adsorption of humic substances. Water Research.  20:1543–1554
  49. Jemec, A., D. Drobne., M. Remskar., K. Sepcic., and T. Tisler. 2008. Effects of ingested nano-sized titanium dioxide on terrestrial isopods (Porcellio scaber). Environmental Toxicology and Chemistry.  27:1904–1914.
  50. Jiang, J., G. Oberdorster., and P. Biswas. 2009. Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies. Journal of Nanoparticle Research.11:77–89.
  51. Jiang, W., H. Mashayekhi., and B. Xing. 2009. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution1. 57:1619–1625.
  52. Johnson, R.L., G.O. Johnson., J.T. Nurmi., and P.G. Tratnyek. 2009. Natural organic matter enhanced mobility of nano zerovalent iron. Environmental Science and Technology. 43:5455–5460.
  53. Joo, S.H., S.R. Al-Abed., and T. Luxton. 2009. Influence of carboxymethyl cellulose for the transport of titanium dioxide nanoparticles in clean silica and mineral-coated sands. Environmental Science and Technology. 43:4954–4959.
  54. Kaegi, R., A. Ulrich, B. Sinnet, R. Vonbank, A. Wichser, S. Zuleeg, H. Simmler, S. Brunner, H. Vonmont, M. Burkhardt., and M. Boller. 2008. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ Pollut. 156:233–239.
  55. Kaegi, R., B. Sinnet, S. Zuleeg., H. Hagendorfer, E. Mueller, R. Vonbank, M. Boller., and M. Burkhardt. 2010. Release of silver nanoparticles from outdoor facades. Environ Pollut. 158:2900–2905.
  56. Kakinen, A., O. Bondarenko., A. Ivask., and A. Kahru. 2011. The effect of composition of different ecotoxicological test media on free and bioavailable copper from CuSO4 and CuO nanoparticles: comparative evidence from a Cu-selective electrode and a Cu-biosensor. Sensors. 11:10502-10521.
  57. Keller, A.A., H.T. Wang., D.X. Zhou., H.S. Lenihan., G. Cherr., B.J. Cardinale., R. Miller., and JI ZX. 2010. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environmental Science and Technology. 44:1962-1967.
  58. Kirby, K., J. McLaughlin., Y. Ma., and B. Ajiboye. 2012. Aging effects on molybdate lability in soils. Chemosphere. 89:876–883.
  59. Kirschling, L., L. Golas., M. Unrine., K. Matyjaszewski., B. Gregory., V. Lowry., and D. Tilton. 2011. Microbial bioavailability of covalently bound polymer coatings on model engineered nanomaterials. Environ. Sci. Technol. 45: 5253–5259.
  60. Lecoanet, H.F., J.Y. Bottero., and M.R. Wiesner. 2004. Laboratory assessment of the mobility of nanomaterials in porous media. Environmental Science and Technology. 38:5164–5169.
  61. Li, M., L. Zhu., and D. Lin. 2011. Toxicity of ZnO nanoparticles to escherichia coli: Mechanism and the influence of medium components. Environmental Science and Technology. 45: 1977-1983.
  62. Liang, P., Q. Ding., and F. Song. 2006. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science.  28:2339–2343.
  63. Lin, D., and B. Xing. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environmental Science and Technology. 42:5917–5923.
  64. Lin, D., X. Tian., F. Wu., and B. Xing. 2010. Fate and transport of engineered nanomaterials in the environment. Journal of Environmental Quality. 39:1896–1908.
  65. Lin, H.W., W.H. Hwu., and M.D. Ger. 2008. The dispersion of silver nanoparticles with physical dispersal procedures. Journal of Materials Processing Technology.  206:56–61.
  66. Lopez-Serrano, A., R.M. Olivas., J.S. Landaluze., and C. Camara. 2014. Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Anal. Methods. 6:38-56.
  67. Lowry, G.V., K.B. Gregory., SC. Apte., and J.R. Lead. 2012. Transformations of nanomaterials in the environment. Environmental Science and Technology. 46:6893-6899.
  68. Lu, C., and H. Chiu. 2006. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science.  61:1138–1145.
  69. Lu, C., Y.L. Chung., and K.F. Chang. 2005. Adsorption of trihalomethanes from water with carbon nanotubes. Water Research.  39:1183–1189.
  70. Lv, J.T., S.Z. Zhang., L. Luo.,  W. Han., J. Zhang., K. Yang., and P. Christie. 2012. Dissolution and microstructural transformation of ZnO nanoparticles under the influence of phosphate. Environmental Science and Technology. 46:7215-7221.
  71. Lyven, B., M. Hassellov., D.R. Turner., C. Haraldsson., and K. Andersson. 2003. Competition between iron- and carbon-based colloidal carriers for trace metals in a freshwater assessed using flow fieldflow fractionation coupled to ICPMS. Geochimica et Cosmochimica Acta.  67:3791–3802.
  72. Madden, A.S., J. Hochella., and T.P. Luxton. 2006. Insights for sizedependent reactivity of hematite nanomineral surfaces through Cu2+ sorption. Geochimica et Cosmochimica Acta. 70:4095–4104
  73. Mansouri, F., L.R. Kalankesh., and H. Hasankhani. 2015. Removal of humic acid from contaminated water by nano-sized TiO–SiO. Advances in Biological Research. 9:58–65.
  74. Mcbride, M.B. 1994. Environmental Chemistry of Soils, New York, Oxford University Press.
  75. Morris, J., and J. Willis J. 2007. U.S. Environmental Protection Agency Nanotechnology White Paper. U.S. Environmental Protection Agency,Washington, DC.
  76. Mu, L., and R. Sprando. 2010. Application of nanotechnology in cosmetics. Pharm Res. 27:1746–1749.
  77. Nel, A., T. Xia., L. Madler., and N. Li. 2006. Toxic potential of materials at the nanolevel. Science.311:622–627.
  78. Nielsen, K., Y. Kalmykova., A.M. Stromvall., A. Baun., and E. Eriksson. 2015. Particle phase distribution of polycyclic aromatic hydrocarbons in stormwater- using humic acid and iron nano-sized colloids as test particles. Science of the Total Environment. 532:103–111.
  79. O’Connor, A. 1988. Use and misuse of the DPTA soil test. J. Environ. Qual. 17:715–718.
  80. Panagiotou, G.D., T. Petsi., K. Bourikas., C.S. Garoufalis., A. Tsevis., N. Spanos., C. Kordulis., and  A. Lycourghiotis. 2008. Mapping the surface (hydr) oxo-groups of titanium oxide and its interface with an aqueous solution: The state of the art and a new approach. Advances in Colloid and Interface Science. 142:20-42.
  81. Paula, S., Tourinho, Cornelis, A. M. Vangestel, L. Stephen, S. Claus, M. V. Amadeu, M. Soares., and L. Susana. 2012. Metal Based nanoparticles in soil: Fate, Behavior and effects on soil invertibrates. Environmental Toxicology and Chemistry.31: 1679-1692.
  82. Pennell, K.D. and J.Y. Costanza. 2008. Transport and retention of nanomaterials in porous media. In Elzey S et al., eds, Nanoscience and Nanotechnology: Environmental and Health Impacts. John Wiley & Sons Inc, Hoboken, NJ, USA.107 -131.
  83. Perreault, F., A. Oukarroum., S.P. Melegari., W.G. Matias., and R. Popovic. 2012. Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemospher. 87:1388-1394.
  84. Perry, T.D., R.T. Cygan., R. Mitchell., and C. Geochim. 2006. Molecular models of alginic acid: Interactions with calcium ions and calcite surfaces. Geochimica et Cosmochimica Acta. 70:3508-3532.
  85. Phenrat, T., N. Saleh., K. Sirk., R.D. Tilton., and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science and Technology. 41:284–290
  86. Philippe, A. 2015. Hydrodynamic Chromatography for Studying Interactions between Colloids and Dissolved Organic Matter in the Environment. Universität Duisburg, Germany.Environmental Science and
    Technology. 48: 8946-8962
  87. Pickering, K.D., and M.R. Wiesner., 2005. Fullerol-sensitized production of reactive oxygen species in aqueous solution. Environmental Science and Technology. 39:1359–1365.
  88. Pipan-Tkalec, Z., D. Drobne., A. Jemec., T. Romih., P. Zidar., and M. Bele. 2010. Zinc bioaccumulation in a terrestrial invertebrate fed a diet treated with particulate ZnO or ZnCl2 solution. Toxicology. 269:198–203.
  89. Pritchard, D.L., N. Penney., M.J. Mclaughlin., H. Rigby., and K. Schwarz. 2010. Land application of sewage sludge (biosolids) in Australia: risks to the environment and food crops. Water Science and Technology. 62:48-57.
  90. Rosicka, D.S., and J. embera. 2011. Assessment of influence of magnetic forces on aggregation of zero-valent iron nanoparticles. Nanoscale Research Letters.  6:1–6.
  91. Royal Commission on Environmental Pollution. 2008. Novel materials in the environment: The case of nanotechnology. London, UK.
  92. Saleh, N.B., N. Aich., J. Plazas-Tuttle., J.R. Lead., and G.V. Lowry. 2015. Research strategy to determine when novel nanohybrids pose unique environmental risks. Environmental Science Nano. 2:11–18.
  93. Sauve, S. 2002. Speciation of metals in soils. In: ALLAN, H. E. (ed.) Bioavailability of Metals in Terrestrial Ecosystems. Pensacola, Florida: Society for Environmental Toxicology and Chemistry.
  94. Shoults-Wilson, W.A., B. C. Reinsch., O.V. Tsyusko., P.M. Bertsch., G.V. Lowry., and J. Unrine. 2011. Role of particle size and soil type in toxicity of silver nanoparticles to earthworms. Soil Science Society of America Journal. 75:365–377.
  95. Skebo, J.E., C. Grabinski., A. Schrand., J. Schlager., and S. Hussain. 2007. Assessment of metal nanoparticle agglomeration, uptake, and interaction using high-illuminating system. Int J Toxicol.26: 135–141.
  96. Soni, D., P.K. Naoghare., S. Saravanadevi., and R.A. Pandey. 2015. Release, transport and toxicity of engineered nanoparticles. Reviews of Environmental Contamination and Toxicology. Springer. 234:1–47.
  97. Stankus, D.P., S.E. Lohse., E.J. Hutchison., and J.A. Nason. 2011. Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents.Environmental Science and Technology. 45:3238-44.
  98. Stone, V., B. Nowack., A. Baun., N. van den Brink., F. von der Kammer., M. Dusinska., R. Handy., S. Hankin., M. Hassellov., E. Joner., and T.F. Fernandes. 2010. Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment. 408:1745–1754.
  99. Tiede, K., M. Hassellov., E. Breitbarth., Q. Chaudhry., and A.B. Boxall. 2009. Considerations for environmental fate and ecotoxicity testing to support environmental risk assessments for engineered nanoparticles. J Chromatogr A. 1216:503–509.
  100. Tourinho, P.S., C.A. Van Gestel., S. Lofts., C. Svendsen., A.M. Soares., and S. Loureiro. 2012. Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environmental Toxicology and Chemistry. 31:1679–1692.
  101. Unrine, J., P. Bertsch., and S. Hunyadi. 2008. Bioavailability, Trophic Transfer, and Toxicity of Manufactured Metal and Metal Oxide Nanoparticles in Terrestrial Environments. John Wiley & Sons, New York, USA.
  102. Unrine, J.M., S.E. Hunyadi., O.V. Tsyusko., W. Rao., W.A. Shoults-Wilson., and P.M. Bertsch. 2010. Evidence for bioavailability of Au nanoparticles from soil and biodistribution within earthworms (Eisenia fetida). Environmental Science and Technology.  44:8308–8313.
  103. Von der Kammer, F., P. Ferguson., A. Holden., A. Masion., R. Rogers., J. Klaine., A. Koelmans., N. Horne., and J. Unrine. 2012. Analysis of engineered nanomaterials in complex matrices (environment and biota): General considerations and conceptual case studies. Environ. Toxicol. Chem. 31: 32–49.
  104. Watson, J.L., T. Fang., C.O. Dimkpa., D.W. Britt., J.E. McLean., and A. Jacobson. 2015. The phytotoxicity of ZnO nanoparticles on wheat varies with soil properties. Biometals. 28:101–112.
  105. Wuithschick, M., S. Witte., F. Kettemann., K. Rademann., and J. Polte. 2015. Illustrating the formation of metal nanoparticles with a growth concept based on colloidal stability. Physical Chemistry Chemical Physics. 17:19895–19900.
  106. Yang, K., and B. Xing. 2007. Desorption of polycyclic aromac hydrocarbons from carbon nanomaterials in waterti. Environmental Pollution. 145:529–537
  107. Yang, K., D.H. Lin., and B.S. Xing. 2009. Interactions of Humic Acid with Nanosized inorganic oxides. Langmuir. 25:3571-3576.
  108. Zhang, F., X. Wu, Y. Chen., and H. Lin. 2009. Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers and Polymers. 10:496–501.
  109. Zhao, J., R. Peralta-Videa., H. Ren., A. Varela-Ramirez., Q. Li., A. Hernandez-Viezcas., J. Aguilera.,  and L. Gardea-Torresdey. 2012c. Transport of Zn in a sandy loam soil treated with ZnO NPs and uptake by corn plants: Electron microprobe and confocal microscopy studies. Chem. Eng. J. 184:1–8.