مروری بر کاربرد نانو مواد در اصلاح خاک‌ها

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران

2 دانشیار گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

چکیده

خاک از منابع اصلی تولیدات کشاورزی محسوب می‌شود. لذا، حفظ سلامتی و حاصلخیزی آن برای تولید پایدار غذا اهمیت زیادی دارد. میزان عناصر غذایی و رطوبت موجود در خاک باید در حد مطلوب بوده و میزان مواد آلاینده موجود در آن به حداقل ممکن کاهش یابد. در این راستا، فناوری نانو می­تواند به بهبود ویژگی‌های خاک کمک نماید. از کاربردهای فناوری نانو در علوم خاک می‌توان به کاربرد اصلاح‌گرهای نانو در بهبود بهره ­وری عملیات زراعی و تهویه خاک، استفاده از نانوزئولیت­های متخلخل برای رهاسازی آرام و مؤثر عناصر غذایی موجود در کودهای شیمیایی، به­ کارگیری نانوهیدروژل­ها برای افزایش ظرفیت نگهداری آب در خاک و کاهش مصرف آب آبیاری، استفاده از نانوذرات برای حذف آلاینده‌های موجود در خاک و غیره اشاره کرد. با این حال، مصرف زیاد نانوذرات در خاک ممکن است ریزجانداران خاکزی را مسموم نماید. بی‌شک با بهره­گیری از مزیت‌های فناوری نانو به‌عنوان یک فناوری پیشرفته نوظهور در بخش کشاورزی، می­توان به نتایج مطلوبی از جمله تضمین امنیت غذایی و توسعه کشاورزی پایدار و سازگار با محیط زیست در کشورهای در حال توسعه جهان دست یافت.
 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Applications of Nanomaterials in Soil Remediation

نویسندگان [English]

  • Masomeh Mahdizadeh 1
  • Nosratollah Najafi 2
1 Ph.D Student, Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
2 Associate professor, Soil Science Department, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
چکیده [English]

Soil forms the main source of agricultural production; hence, preserving its health and fertility plays an important role in sustainable food production. This warrants maintaining adequate soil nutrients and moisture and minimizing its pollutant load. Nanotechnology might be exploited to achieve these goals toward improved soil properties. Applications of nanotechnology in soil science might include the uses  of such materials as nanomodifiers to improve the efficiency of agronomic operations and soil aeration, porous nanozeolites for the slow and effective release of nutrients present in chemical fertilizers, nanohydrogels to increase soil water retention capacity and reduce irrigation water, and nanoparticles to remove contaminants from the soil. However, excessive use of nanomaterials might have toxic effects on soil microorganisms. It follows that sound and proper utilization of nanotechnology as an emerging technology might lead to such beneficial outcomes as food security and development of environment-friendly and sustainable agriculture in developing countries.

کلیدواژه‌ها [English]

  • soil
  • Nanotechnology Nanobiochar
  • Nanosensor
  • Nanoclay
  1. کوچکی ع. خواجه حسینی م. 1387. زراعت نوین. انتشارات جهاد دانشگاهی مشهد، مشهد.
  2. Agency for Toxic Substances and Disease Registry (ATSDR). 2007. Toxicological Profile for Lead. Atlanta, GA.
  3. Ahmad, M., Y. Hashimoto., D.H. Moon., S.S. Lee., and Y.S. Ok. 2012. Immobilization of lead in a Korean military shooting range soil using eggshell waste: An integrated mechanistic approach. Journal of Hazardous Materials.  210: 392– 401.
  4. Albadarin, A., C. Mangwandia., Y. Glocheuxa., G. Walker., and M. Ahmad. 2014. Experimental design and batch experiments for optimization of Cr (VI) removal from aqueoussolutions by hydrous cerium oxide nanoparticles. Chemical Engineering Research and Design. 92: 1354.
  5. Ali, M.A., I. Rehman., A. Iqbal., S. Din., A.Q. Rao., A. Latif., T.R. Samiullah., S. Azam., and T. Husnain. 2014. Nanotechnology: A new frontier in Agriculture. Nanotechnology, a new frontier in Agriculture. International Journal of Advanced Life Sciences.  3:129-138.
  6. Anita, S., and D.P. Rao. 2014. Enhancement of seed germination and plant growth of wheat, maize, peanut and garlic using multiwalled carbon nanotubes. European Chemical Bulletin. 3: 502-504 502.
  7. Baruah, S., and J. Dutta. 2009. Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environmental Chemistry Letters. 7:191-204.
  8. Bhupindar, S.S. 2014. Nanothechnology in agri- food production: an overview. Nanotechnology science and applications. India. www.Dovepress. 7:31-53.
  9. Bottero, J.Y., M. Auffan, J. Rose, C. Mouneyrac, C. Botta, J. Labille, A. Masion, A. Thill., and C. Chaneac. 2011. Manufactured metal and metal-oxide nanoparticles: Properties and perturbing mechanisms of their biological activity in ecosystems. Comptes Rendus Geoscience. 343: 168-176.
  10. Bowman, D.C., and R.Y. Evans. 1991. Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium. Hort Science. 26:1063-1065.
  11. Chen, C., and X. Wang. 2006. Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes. Industrial & Engineering Chemistry Research. 45:9144–9149.
  12. Chen, H., and R. Yada. 2011. Nanotechnologies in agriculture: New tools for sustainable development. Trends in Food Science & Technology. 22:585-94.
  13. Chinnamuthu, C.R., and P. Boopathi. 2009. Nanotechnology and Agroecosystem, Madras Agricultural Journal. 96: 17-31.
  14. Demitri, F.C., M. Scalera., A. Madaghiele., A. Sannino., and Maffezzoli. 2013. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture, International Journal of Polymer Science.  1–6.
  15. Ding, Q., P. Liang., F. Song., and A. Xiang. 2006. Separation and preconcentration of silver ion using multiwalled carbon nanotubes as solid phase extraction sorbent. Separation Science and Technology.  41: 2723–2732
  16. Dixit, S., and J.G. Hering. 2003. Comparison of arsenic (V) and arsenic (III) sorption onton iron oxide minerals: implications for arsenic mobility. Environmental Science and Technology. 37:4182– 4189.
  17. Donaldson, K., C.A. Poland. and R.P. Schins. 2010. Possible genotoxic mechanisms of nanoparticles: Criteria for improved test strategies. Nanotoxicology. 4:414-420.
  18. El Asria, S., A. Laghzizila., A. Saoiabia., A. Alaouib., K. El Abassib., R. Mhamdib., and T. Coradinc. 2009. A novel process for the fabrication of nanoporous apatites from Moroccan phosphaterock. Colloids and Surfaces. 350:73-8.
  19. El-Salmawi, KM. 2007. Application of polyvinyl alcohol (PVA) carboxylmethyl cellulose (CMC) hydrogel produced by conventional crosslinking or by freezing and tawing. Journal of Macromolecular Science Part A Pure and Applied Chemistry. 44:619-24.
  20. Esfahani, A.F., G. Sayyad., A. Kiasat., L. Alidokht., and A. Khataee. 2014. Pb (II) removal from aqueous solution by polyacrylic acid stabilized zerovalent iron nanoparticles: process optimization using response surface methodology. Research on Chemical Intermediates. 40: 431-445.
  21. Fan, G., W. Qin., C. Zhou., H. Gomes., and D. Zhou. 2013. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Separation and Purification Technology. 114:64-72.
  22. Fraden, J. 1993. AIP Handbook of Modern Sensors: Physics, Design and Applications, American Institute of Physics, New York.
  23. Ganji, F., and V.A. Farahani. 2009. Hydrogels in controlled drug delivery systems. Iranian Polymer Journal. 18: 63–88.
  24. Gardea-Torresdey, J.L., C.M. Rico., and J.C. White. 2014. Trophic transfer, transformation, and impact of engineered nanomaterials in terrestrial environments. Environmental Science and Technology. 48:2526-2540.
  25. Goswami, A., and P.R. Purkait. 2012. Arsenic adsorption using copper (II) oxide nanoparticles. Chemical Engineering Research and Design. 90:1387.
  26. Guo, M.Y., M.Z. Liu., F.L. Zhan., and L. Wu. 2005. Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Industrial and Engineering Chemistry Research. 44 :4206–4211.
  27. Hemen, K., P. Vinay., B. Maryam Shojaei., and M. Aslama. 2016. Graphene quantum dot soil moisture sensor. Sensors & Actuators, B: Chemical. 233: 582-590.
  28. JACKBen-Moshe, T., I. Dror., and B. Berkowitz. 2010. Transport of metal oxide nanoparticles in saturated porous media. Chemosphere. 81:387–393.
  29. Jackson, T., M. Katrina., S. Mohamed., C. Tommy. and R. Peter. 2008. Measuring soil temperature and moisture using wireless MEMS sensors. Journal Measurement. 41: 381–390
  30. Jaeger, R. 2002. Introduction to Microelectronic Fabrication, vol. V, Prentice Hall
  31. James, E.A., and D. Richards. 1986. The influence of iron source on the water-holding properties of potting media amended with waterabsorbing polymers. Scientia Horticulturae. 28:201-208.
  32. Jeonghwan, H., S. Changsun., and Y. Hyun. 2010. Study on an Agricultural Environment Monitoring Server System using Wireless Sensor Networks”, School of Information and Communication Engineering, Sunchon National University, Maegok-don.
  33. Jiang, W., H. Mashayekhi., and B. Xing. 2009. Bacterial toxicity comparison between nano-and micro-scaled oxide particles. Environmental Pollution. 157:1619–1625.
  34. Jinghua, G. 2004. Synchrotron radiation, soft X-ray spectroscopy and nano-materials. Journal of Nanotechnology. 1:193-225.
  35. Johnson, M.S., and C.J. Veltkamp. 1985. Structure and functioning of water-storage agriculture polyacrylamides. Journal of the Science of Food and Agriculture. 36:789- 793.
  36. Johnston, C.T. 2010. Probing the nanoscale architecture of clay minerals. Clay Minerals. 45:245-79.
  37. Joo, S.H., and D. Zhao. 2008. Destruction of lindane and atrazine using stabilized iron nanoparticles under aerobic and anaerobic conditions: effects of catalyst and stabilizer. Chemosphere.70:418–425.
  38. Joseph, S., E.R. Graber., C. Chia., P. Munroe., S. Donne., T. Thomas., S. Nielsen, C. Marjo., H. Rutlidge., G.X. Pan ., X.R. Fan., P. Taylor., A. Rawal., and J. Hook. 2013. Shifting paradigms on biochar: micro/nano-structures and soluble components are responsible for its plant-growth promoting ability. Carbon Management. 4: 323–343.
  39. Kimetu, J.M., J. Lehmann., S.O. Ngoze., D.N. Mugendi., J.M. Kinyangi., S. Riha., L. Verchot., J.W. Recha., and A.N. Pell. 2008. Reversibility of soil productivity decline with organic matter of differing quality along a degradation gradient. Ecosystems. 11: 726–739.
  40. Klaine, S.J., P.J. Alvarez, G.E. Batley, T.F. Fernandes, R.D. Handy, D.Y. Lyon., and J.R. Lead. 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 27: 1825- 1851.
  41. Klaine, S.J., P.J. Alvarez., G.E. Batley., T.F. Fernandes., R.D. Handy., D.L. Lyon., and J.R. Lead., 2008. Nanomaterials in the environment: Behavior, fate, bioavailability, and effects. Environmental Toxicology and Chemistry. 27: 1825- 1851.
  42. Krzisnik, N., A. Skapin., L. Skrlep., J. Scancar., and R. Milacic. 2014. Nanoscale zero-valent iron for the removal of Zn2+, Zn (II)–EDTA and Zn (II)–citrate from aqueous solutions. Science of  The Total Environment. 20: 476–477.
  43. Kulkarni, A.R., K.S. Soppimath., T.M. Aminabhavi., A.M. Dave., and M.H. Mehta. 2000. Glutaraldehyde crosslinked sodium alginate beads containing liquid pesticide for soil application. Journal of Controlled Release.  63: 97–105.
  44. Lal, R. 2007. Soil science and the carbon civilization. Soil Science Society of America Journal. 71:1425-37.
  45. Legrand, L., A. El Figuigui., F. Mercier., and A. Chausse. 2004. Reduction of aqueous chromate by Fe (II) / Fe (III) carbonate green rust: kinetic and mechanistic studies. Environmental Science and Technology. 38:4587–4595.
  46. Lehmann, J., and S. Joseph. 2012. Biochar for Environmental Management: Science and Technology. Routledge.
  47. Li, M., L. Zhu., and D. Lin. 2011. Toxicity of ZnO nanoparticles to escherichia coli: Mechanism and the influence of medium components. Environmental Science and Technology. 45: 1977-1983.
  48. Li, Y.C., S. Yu., J. Strong., and H.L. Wang. 2012. Are the biogeochemical cycles of carbon, nitrogen, sulfur, and phosphorus driven by the “Fe III-Fe II redox wheel” in dynamic redox environments. Journal of Soils and Sediments.12: 683–693.
  49. Liang, P., Q. Ding., and F. Song. 2006. Application of multiwalled carbon nanotubes as solid phase extraction sorbent for preconcentration of trace copper in water samples. Journal of Separation Science. 28:2339–2343.
  50. Liang, P., Y. Liu., L. Guo., J. Zeng., and H. Lu. 2004. Multiwalled carbon nanotubes as solid-phase extraction adsorbent for the preconcentration of trace metal ions and their determination by inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry. 19:1489–1492
  51. Liang, R., H. Yuan., G. Xi., and Q. Zhou. 2009. Synthesis of wheat straw-g- poly (acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers. 77: 181–187.
  52. Liu, R., and R. Lal. 2015. Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment. 514: 131–139.
  53. Liu, X., Z. Feng., S. Zhang., J. Zhang., Q. Xiao., and Y. Wang. 2006. Preparation and testing of cementing nano-subnano composites of slower controlled release of fertilizers. Scientia Agricultura Sinica. 39:1598- 604.
  54. Long, R.Q, and R.T. Yang. 2001. Carbon nanotubes as superior sorbent for dioxin removal. Journal of the American Chemical Society. 123:2058–2059.
  55. Lu, C., and H. Chiu. 2006. Adsorption of zinc (II) from water with purified carbon nanotubes. Chemical Engineering Science.  61:1138–1145.
  56. Luo, X., A.J. Killard., A. Morrin., and M.R. Smyth. 2007. Electrochemical preparation of distinct polyaniline nanostructrues by surface charge control of polystyrene nanoparticle templates. Chemical Communications. 3207–3209.
  57. Ma, Q.Y., S.J. Traina., T.J. Logan., and J.A. Ryan. 1994. Effects of aqueous Al, Cd, Cu, Fe (II), Ni, and Zn on Pb immobilization by hydroxyapatite. Environmental Science and Technology. 28: 1219–1228.
  58. Manikandan, A., and K.S. Subramanian. 2013. “Fabrication and characterisation of nanoporous zeolite based N fertilizer”, Department of Nano Science and Technology, Tamil Nadu Agricultural University Coimbatore, 18 December.
  59. Mao, HE., S.H. Hui., Z.H. Xinyue., Y.U. Ya., and Q.U. Bo. 2013. Immobilization of Pb and Cd in contaminated soil using nanocrystallite Hydroxyapatite. Procedia Environmental Sciences. 18:657 – 665.
  60. Martinson, C.A., and K.J. Reddy. 2009. Adsorption of arsenic (III) and arsenic (V) by cupric oxide nanoparticles. Journal of Colloid and Interface Science. 336:406-11.
  61. Marzieh, T., and M. 2015. Effect of nanoparticles on kinetics release and fractionation of phosphorus. Journal of hazardous materials. 283:359-370.
  62. Maurice, P.A., and M.F. Hochella. 2008. Nanoscale particles and processes: a new dimension in soil science. Advances in Agronomy. 100:123-38.
  63. Midander, K., P. Cronholm, H.I. Karlsson, K. Elihn, L. Moller, C. Leygraf., and I.O. Wallinder. 2009. Surface characteristics, copper release, and toxicity of nano- and micrometersized copper and copper (II) oxide particles: a cross-disciplinary study. Small. 5:389–39.
  64. Mignard, S., A. Corami., and V. Ferrini. 2012. Evaluation of the effectiveness of phosphate treatment for the remediation of mine waste soils contaminated with Cd, Cu, Pb, and Zn. Journal Chemosphere. 86: 354-360.
  65. Naderi1, M.R., and A. Danesh-Shahraki. 2013. “Nanofertilizers and their roles in sustainable agriculture”, International Journal of Agriculture and Crop Sciences. 19:2229-2232.
  66. Nair, R., S.H. Varghese, B.G. Nair, T. Maekawa, Y. Yoshida., and D.S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179, 154–163.
  67. Olesen, K.P. 2010. Turning sandy soil to farmland: 66% water saved in sandy soil treated with NanoClay. Vassoy: Desert Control Institute Inc., pp. 10. Available from: http://www.desertcontrol.com
  68. Olyaie, E., A. Afkhami., A. Rahmani., and J. Khodaveisil 2012. Development of a cost-effective technique to remove the arsenic contamination from aqueous solutions by calcium peroxide nanoparticles. Separation and Purification Technology. 95:10-15.
  69. Palaparthy, V.S., M. Shojaei-Baghini., and D.N. Singh. 2013. Review of polymer-basedsensors for agriculture-related applications. Emerging Materials Research. 2:166–180.
  70. Panneerselvam, P., and N.M. Lim. 2013. Separation of Ni (II) Ions From Aqueous Solution onto Maghemite Nanoparticle (γ-Fe3O4) Enriched with Clay. Separation Science and Technology. 48:2670-2680.
  71. Parvathy, P.C., and A.N. Jyothi. 2014. Rheological and thermal properties of saponified cassava starch-g-poly (acrylamide) superabsorbent polymers varying in grafting parameters and absorbency. Journal of Applied Polymer Science. 131:40368–40379.
  72. Patil, S.J., A. Adhikari., M. Shojaei-Baghini., and V. Ramgopal. 2014. An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform forhumidity and soil moisture detection. Sensors and Actuators B. 203: 165–173.
  73. Peralta-videa., J.R. Zhao, L. Lopez-moreno, M.L. Delarosa, G. Hong., and J.L. Gardea-torresdey. 2011. Nanomaterials and the environment: A review for the biennium. Journal of Hazardous Materials. 186:1-15.
  74. Phenrat, T., N. Saleh., K. Sirk K., R.D. Tilton., and G.V. Lowry. 2007. Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environmental Science and Technology. 41:284–290
  75. Ramesh, V., V. Suresh., N. Mamatha., and D. SrinivasaRao. 2015. Biodegradable Nano-Hydrogels in Agricultural Farming Alternative Source For Water Resources. Procedia Materials Science. 10: 548 – 554.
  76. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. U.S.D.A. Handbook 60.
  77. Rizzoni, G. 2000. Principles and Applications of Electrical Engineering, 3th ed., McGraw-Hill, USA.
  78. Saha, S.P. 2012. Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials. 68:227– 228.
  79. Santiago, F., A.E. Mucientes., M. Osorio., and C. Rivera. 2007. Preparation of composites and nanocomposites based on bentonite and poly (sodium acrylate). Effect of amount of bentonite on the swelling behavior. European Polymer Journal. 43: 1–9.
  80. Shahwan, T., A. Eroglu., and I. Lieberwirth. 2010. Synthesis and characterization of bentonite/iron nanoparticles and their application as adsorbent of cobalt ions. Applied Clay Science. 47:257.
  81. Shipley, H.J, S. Yean., A.T. Kan., and M.B. Tomson. 2009. Effect of solid concentration, pH, IS, and Temperature on arsenic adsorption. Environmental Toxicology and Chemistry.  28:509–515.
  82. Singh, I.B., and D.R. Singh. 2003. Effects of pH on Cr–Fe interaction during Cr (VI) removal by metallic iron. Environmental Technology. 24: 1041–1047.
  83. Smedley, P.L., and D.G. Kinniburgh. 2002. A review of the source, behavior, and distribution of arsenic in natural waters. Appl Geochem. 17:517–568.
  84. Sneath, H.E., T.R. Hutchings., and De F. A. Leij. 2013. Assessment of biochar and iron filing amendments for the remediation of a metal, arsenic and phenanthrene co-contaminated spoil. Environmental Pollution. 178:361-366.
  85. Su, H., Z.Q. Fang., P. Eric Tsang., J. Fang., and D. Zhao. 2016. Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil. Environmental Pollution. 214: 94-100.
  86. Subramanian, K.S., A. Manikandan., M. Thirunavukkarasu., C. Sharmila Rahale. 2015. Nano-fertilizers for Balanced Crop Nutrition. Nanotechnologies in Food and Agriculture. Springer International Publishing Switzerland.
  87. Suiqiong, Li., S. Aleksandr., and A. Bryan. 2010. “Sensors for Agriculture and the Food Industry”. the Electrochemical Society Interface.
  88. Suresh, A.K., D.A. Pelletier., and M.J. Doktycz. 2013. Relating nanomaterial properties and microbial toxicity. Nanoscale. 5: 463-474.
  89. Taghipour, M., and M. Jalali. 2015. Effect of nanoparticles on kinetics release and fractionation of phosphorus. Journal of hazardous materials.  283: 359-370.
  90. Tal Ben-Moshe., F. Sammy, D. Ishai, M. Dror., and B. Brian. 2013. Effects of metal oxide nanoparticles on soil properties. Journal Chemosphere. 90:640-646.
  91. Tan, X.F., Y.G. Liu., G. Zeng., X. Wang., X. Hu., Y. Gu., and Z. Yang. 2015. Application of biochar for the removal of pollutants from aqueous solutions. Chemosphere. 125:70–85.
  92. Thill, A., O. Zeyons, O. Spalla, F. Chauvat, J. Rose, M. Auffan., and A.M. Flank. 2006. Cytotoxicity of CeO2 nanoparticles for escherichia coli. physicochemical insight of the cytotoxicity mechanism. Environmental Science and Technology. 40: 6151-6156.
  93. Vance, D. 2005. Nanotechnology for Hazardous Waste Site Remediation, Technical Workshop Washington DC October 20-21.
  94. Wang, Q., and H. Choi. 2012. Removal of trichloroethylene DNAPL trapped in porous media using nanoscale zerovalent iron and bimetallic nanoparticles: Direct observation and quantification. Journal of hazardous materials. 299: 213–214.
  95. Wang, X., C. Chen., W. Hu., A. Ding., D. Xu., and X. Zhou. 2005. Sorption of 243 Am (III) to multiwall carbon nanotubes. Environmental Science and Technology.  39:2856–2860.
  96. Wang, X., S. Lu., C. Gao., X. Xu., Y. Wei., and X. Bai. 2014. Biomass-based multifunctional fertilizer system featuring controlled-release nutrient, water retention and amelioration of soil, RSC Advances 4. 35:18382–18390.
  97. Wang, Y., Y. Wang., L. Wang., and L. Cang. 2012. Automatic pH control system enhances the dechlorination of 2,4,4′-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Fe0 and Pd/Fe0. Environmental Science and Pollution Research. 19: 448-457.
  98. Wang, Z., X. Xie., J. Zhao., X. Liu., W. Feng., J.C. White., and B. Xing. 2012. Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environmental Science & Technology. 46:4434-41.
  99. Waterlot, C., C. Pruvot., H. Ciesielski., and F. Douay. 2011. Effects of a phosphorus amendment and the pH of water used for watering on the mobility and phytoavailability of Cd, Pb and Zn in highly contaminated kitchen garden soils. Ecological Engineering.  37:1081–1093.
  100. Yan, J.C., L. Han., W.G. Gao., S. Xue., and M.F. Chen. 2015. Biochar supported nanoscale zerovalent composite used as persulfate activator for removing trichloroethylene. Bioresource Technology. 175:269-274.
  101. Yan, L., L. Kong., Z. Qu., L. Li., and G. Shen. 2014. Magnetic biochar decorated with ZnS nanocrystals for Pb (II) removal. ACS Sustainable Chemistry & Engineering. 3:125–132.
  102. Yang, K., L. Zhu., and B. Xing. 2006. Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials. Environmental Science & Technology. 40:1855-61.
  103. Yang, Z.M., and Z.Q. Fang. 2014. The research progress of repairing the soil polluted by Cd and Pb with biochar. Environmental Protection Chemicalindustrial. 34:525-531.
  104. Yavuz, C.T., J.T. Mayo., W.W. Yu., A.Prakash., J. Falkner., S. Yean., L. Cong., H.J. Shipley., A.T. Kan., M.B. Tomson., D. Natelson., and V.L. Colvin. 2006. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science. 314:964–967.
  105. Zhang,  F., R. Wang., Q. Xiao., Y. Wang., and J. Zhang. 2006. Effects of slow/controlled- release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience. 11:18-26.
  106. Zhang, Z.Z., MY. Li., W. Chen., S.Z. Zhu., N.N. Liu., and L.Y. Zhu. 2010. Immobilization of lead and cadmium from aqueous solution and contaminated sediment using nano-hydroxyapatite. Environmental Pollution. 158: 514-519.
  107. Zhou, Y., C. Branford-White., Z. He., and L. Zhu. 2009. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. Journal of Colloid and Interface Science. 330: 29-37.