معرفی کاربرد رادیونوکلوئید‌ پلوتونیوم در تحقیقات فرسایش خاک

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشجوی دکتری، گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

2 عضو هیأت علمی بازنشسته سازمان تحقیقات، آموزش و ترویج کشاورزی

3 دانشیار گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران

4 کارشناس ارشد پژوهشکده کشاورزی هسته‌ای، پژوهشگاه علوم و فنون هسته‌ای، تهران، ایران.

چکیده

فرسایش خاک تهدیدی جدی برای زندگی بشر می­باشد. از این­رو استفاده از روش­های مناسب جهت ارزیابی میزان فرسایش و رسوبگذاری و همین طور اجرای برنامه­های حفاظت خاک امری ضروری است. از رادیونوکلوئیدهای ریزشی از قبیل بریلیم-7 (Be7)، سرب-210 (Pb210) و سزیم-137 (Cs137) به عنوان ردیاب برای ارزیابی میزان جابجایی خاک در مطالعات مختلف استفاده شده است. در این مقاله، کارایی ایزوتوپ­های پلوتونیوم- 240+239 (Pu240+239) به عنوان یک ردیاب جدید جهت ارزیابی میزان فرسایش و رسوبگذاری بررسی شده است. ایزوتوپ­های پلوتونیوم عمدتاً در نتیجه فعالیت­های هسته­ای شامل آزمایش­ها و انفجار سلاح­های اتمی به محیط وارد می­شوند و از میان آن­ها ایزوتوپ­های Pu240+239 دارای مزایایی از جمله نیمه عمر بالا، قابل دسترس بودن در محیط، دقت مناسب روش­های اندازه­گیری و یکنواخت بودن مقدار آن­ها در نقاط مرجع، می­باشند. تاریخچه استفاده از پلوتونیوم به عنوان ردیاب جابجایی خاک به سال 1978 بر می­گردد و تا به امروز تعداد اندکی مطالعه کاربردی در این مورد انجام شده است. بنابراین قابلیت استفاده به عنوان یک ردیاب مفید و قابل اطمینان جهت ارزیابی میزان جابجایی خاک در مقایسه با دیگر تکنیک­های موجود را دارا می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Application of Plutonium Radionuclide in Soil Erosion Research

نویسندگان [English]

  • Morad Mirzai 1
  • Mohammad Hassan Roozitalab 2
  • Hossein Asadi 3
  • Rayehe Mirkhani 4
1 Ph.D Student, Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University
3 Associate Prof. Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology, Tehran University
4 2- M.Sc, Nuclear Agriculture School, Nuclear Science and Technology Research Institute, Tehran, Iran.
چکیده [English]

Soil erosion is a serious threat to human life. This calls not only for appropriate methods of assessing soil erosion and sedimentation levels but also for the implementation of soil conservation practices. Fallout radionuclides (FRN) such as beryllium-7 (7Be), lead-210 (210Pbex), and cesium-137 (137Cs) have been used as soil redistribution tracers in various studies. The present review aims to investigate the suitability of plutonium 239+240 (239 + 240Pu) radioisotopes as a new tracers for the assessment of soil redistribution rates. Plutonium isotopes are present in the environment mainly due to nuclear activities including nuclear weapon tests and nuclear power plants (NPP). Among them, the 239+240Pu isotopes offer such advantages as long half-lives, availability, relatively easier determination using highly sensitive techniques, and uniformity of their values at reference sites. Application of plutonium isotopes as soil redistribution tracers was first investigated in 1978.However, relatively few practical attempts have been eversince made to exploit the full potential of Pu isotopes as efficient and reliable tools for soil redistribution assessment compared to other existing techniques.
 

کلیدواژه‌ها [English]

  • Soil redistribution
  • sedimentation
  • Isotope
  • Tracer
  1. Alewell, C., K. Meusburger, G. Juretzko, L. Mabit and M.E. Ketterer. 2014. Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere. 103: 274-280.
  2. Alewell, C., A. Pitois, K. Meusburger, M. Ketterer, and L. Mabit. 2017. 239+ 240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth-Science Reviews. 172:107-123.
  3. Alvarado, J.C., P. Steinmann, S. Estier, F. Bochud, M. Haldimann, and P. Froidevaux. 2014. Anthropogenic radionuclides in atmospheric air over Switzerland during the last few decades. Nature communications. 5, p.3030.
  4. Arata, L., C. Alewell, E. Frenkel, A. A'Campo-Neuen, A.R. Iurian, M.E. Ketterer, M.E. and et al., 2016a. Modelling deposition and erosion rates with RadioNuclides (MODERN) – part 2: a comparison of different models to convert 239+240Pu inventories into soil redistribution rates at unploughed sites. Journal of Environmental Radioactivity. 162–163: 97–106.
  5. ATSDR, 2010. Toxicological Profile for Plutonium. Agency for Toxic Substances and Disease Registry. Department of Health and Human Services, Public Health Service, Atlanta, GA: U.S.
  6. Basher, L. R. 2000. Surface erosion assessment using 137Cs: examples from New Zealand. Acta geológica hispánica. 35(3): 219-228.
  7. Bunzl, K., H. Flessa, W. Kracke, and W. Schimmack. 1995. Association of fallout 239+240Pu and 241Am with various soil components in successive layers of a grassland soil. Environmental Science and Technology. 29: 2513-2518.
  8.  Cooper, L.W., J.M. Kelley, L.A. Bond, K.A. Orlandini, and J.M. Grebmeier. 2000. Sources of the transuranic elements plutonium and neptunium in artic marine sediments. Marine Chemistry 69: 253-276.
  9. Elser, J. and E. Bennett. 2011. A broken biogeochemical cycle. Nature. 478: 29-31.
  10. Everett, S. E., S.G. Tims, G.J. Hancock, R. Bartley, and L. K. Fifield. 2008. Comparison of Pu and 137Cs as tracers of soil and sediment transport in a terrestrial environment. Journal of Environmental Radioactivity. 99(2): 383-393.
  11.  FAO, ITPS, 2015. Status of the world's soil resources (SWSR) - main report. In: Food and Agriculture Organization of the United Nations and Intergovernmental Technical Panel on Soils Rome, Italy, (1-650 pp.).
  12.  Fifield, L. K. 2008. Accelerator mass spectrometry of the actinides. Quaternary Geochronology, 3(3): 276-290.
  13.  Foster, G.R., and T.E. Hakonson. 1987. Erosional Losses of Fallout Plutonium, Symposium on Environmental Research for Actinide Elements. Marine Inst.; Pacific Northwest Lab., Richland, WA (USA), Sapelo Island (USA); Georgia University, pp. 7-11 (Nov 1984).
  14. Guerra, A. J. T., M. A. Fullen, M.D.C.O. Jorge, J.F.R. Bezerra and M.S. Shokr. 2017. Slope processes, mass movement and soil erosion: A review. Pedosphere. 27(1): 27-41.
  15.  Harley, J.H. 1980. Plutonium in the environment - a review. Journal of Radiation Research. 21(1), 83-104
  16.  Hirose, K., Y. Kikawada, Y. Igarashi, H. Fujiwara, D. Jugder, Y. Oi. T. Matsumoto, and M. Nomura. 2017. Plutonium, Cs-137 and uranium isotopes in Mongolian surface soils. Journal of Environmental Radioactivity.166: 97-103.
  17.  Hoo, W. T., L. K. Fifield, S.G.Tims, T.Fujioka, and N. Mueller. 2011. Using fallout plutonium as a probe for erosion assessment. Journal of environmental radioactivity. 102(10): 937-942.
  18.  Hu, Q.H., J.Q. Weng, and J.S. Wang. 2010. Sources of anthropogenic radionuclides in the environment: a review. Journal of Environmental Radioactivity. 101, 426-437.
  19.  IAEA, 2014a. Guidelines for Using Fallout Radionuclides to Assess Erosion and Effectiveness of Soil Conservation Strategies. International Atomic Energy Agency, Vienna, Austria (1-213 pp.).
  20.  Iurian, A.R., L. Mabit, and C. Cosma. 2014. Uncertainty related to input parameters of Cs-137 soil redistribution model for undisturbed fields. Journal of Environmental Radioactivity. 136: 112-120.
  21.  Iurian, A.R., A, Pitois, G. Kis-Benedek, A. Migliori, R. Padilla-Alvarez, and A. Ceccatelli. 2016. Assessment of measurement result uncertainty in determination of Pb-210 with the focus on matrix composition effect in gamma-ray spectrometry. Applied Radiation and Isotopes. 109: 61-69.
  22.  Joshi, S.R., and B.S. Shukla. 1991. The role of the water soil distribution coefficient in the watershed transport of environmental radionuclides. Earth and planetary science letters. 105(1-3): 314-318. 105, 314-318.
  23. Ketterer, M.E., J. Zhang, and M. Yamada. 2011. Application of transuranics as tracers and chronometers in the environment. In: Baskaran, M. (Ed.), Handbook of Environmental Isotope Geochemistry, Advance in Isotope Geochemistry. Springer, Berlin, Heidelberg, Germany, pp. 395-417.
  24. Lee, M.H., and C.W. Lee.1999. Determination of Cs-137, Sr-90 and fallout Pu in the volcanic soil of Korea. Journal of Radioanalytical and Nuclear Chemistry. 239: 471-476.
  25.  Mabit, L., M. Benmansour, J.M.  Abril, D.E. Walling, K. Meusburger, A.R. Iurian, C. Bernard, S. Tarjan, P.N. Owens, W.H. Blake, and C. Alewell.  2014. Fallout Pb-210 as a soil and sediment tracer in catchment sediment budget investigations: a review. Earth-science reviews, 138: 335-351.
  26. Mabit, L., M. Benmansour, and D.E. Walling. 2008. Comparative advantages and limitations of the fallout radionuclides Cs-137, Pb-210(ex) and Be-7 for assessing soil erosion and sedimentation. Journal of environmental radioactivity. 99(12): 1799-1807.
  27. Meusburger, K., L. Mabit, M. Ketterer, J.H. Park, T. Sandor, P. Porto, and C. Alewell. 2016. A multi-radionuclide approach to evaluate the suitability of Pu239 +240 as soil erosion tracer. Science of the Total Environment. 566: 1489-1499.
  28.  Morss, L. R., N.M. Edelstein, and J. Fuger. 2006. The chemistry of the actinide and transactinide elements.
  29.  Muller, R.N., D.C. Sprugel, and B. Kohn. 1978. Erosional transport and deposition of plutonium and cesium in 2 small midwestern watersheds. Journal of Environmental Quality. 7(2: 171-174.
  30.  Myasoedov, B. F., and F.I Pavlotskaya. 1989. Measurement of radioactive nuclides in the environment. Analyst. 114(3): 255-263.
  31.  Nisbet, A.F., B. Salbu, and S. Shaw.  1993. Association of radionuclides with different molecular- size fractions in soil solution - implications for plant uptake. Journal of Environmental Radioactivity.18: 71-84.
  32.  Perelygin, V. P., and Y.T. Chuburkov. 1997. Man-made plutonium in environment-possible serious hazard for living species. Radiation measurements. 28(1): 385-392.
  33.  Porto, P. and D.E. Walling.  2012. Validating the use of Cs-137 and Pb-210(ex) measurements to estimate rates of soil loss from cultivated land in southern Italy. Journal of Environmental Radioactivity. 106: 47-57.
  34.  Porto, P., D.E. Walling, C. Alewell, G. Callegari, L. Mabit, N. Mallimo, K. Meusburger, and M. Zehringer. 2014. Use of a Cs-137 re-sampling technique to investigate temporal changes in soil erosion and sediment mobilisation for a small forested catchment in southern Italy. Journal of Environmental Radioactivity. 138: 137-148.
  35. Preiss, N., M. Meliérè, and M, Pourchet. 1996. A compilation of data on lead-210 concentration in surface air and fluxes at the air-surface and water-sediment interfaces. Journal of Geophysical Research: Atmospheres. 101(D22): 28847-28862.
  36. Qiao, J., X. Hou, M. Miró, and P. Roos. 2009. Determination of plutonium isotopes in waters and environmental solids: a review. Analytica chimica acta. 652(1-2): 66-84.
  37. Schimmack, W., K. Auerswald, and K. Bunzl. 2002. Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers. Naturwissenschaften. 89(1): 43-46.
  38. Taylor, A., W.H. Blake, H.G. Smith, L. Mabit, and M.J. Keith-Roach. 2013. Assumptions and challenges in the use of fallout beryllium-7 as a soil and sediment tracer in river basins. Earth- Science Review. 126: 85-95.
  39. Taylor, D.M. 2001. Environmental plutonium - creation of the universe to twenty-first century mankind. In: Kudo, A. (Ed.), Plutonium in the Environment, (1-14 pp.).
  40. Tims, S.G., S.E. Everett, L.K. Fifield, G.J. Hancock, and R. Bartley. 2010. Plutoniumas a tracer of soil and sediment movement in the Herbert River, Australia. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms. 268: 1150-1154.
  41.  Tims, S.G., G.J. Hancock, L. Wacker, and L.K. Fifield. 2004. Measurement of Pu and Ra isotopes in soils and sediments by AMS. Nuclear Instruments and Methods in Physics Research B 223-224: 796-801.
  42.   UNSCEAR, 2000. Sources and Effects of Ionizing Radiation. United National Scientific Committee on the Effects of Atomic Radiation Exposures to the Public from Man-made Sources of Radiation. United Nations, New York.
  43.  Van Pelt, R.S., and M.E. Ketterer. 2013. Use of anthropogenic radioisotopes to estimate rates of soil redistribution by wind II: the potential for future use of 239 + 240Pu. Aeolian Res. 9: 103-110.
  44.   Walling, D.E. 2012. The use of fallout radionuclides in the study of erosion and sedimentation. In: Meyers, R.A. (Ed.), Encyclopedia of Sustainability, Science and Technology. Springer Verlag, Berlin.
  45.   Xu, Y., S. Pan, M. Wu, K. Zhang, and Y. Hao.  2017. Association of Plutonium isotopes with natural soil particles of different size and comparison with 137Cs. Science of the Total Environment. 581: 541-549.
  46.  Xu, Y., J. Qiao, S. Pan, X.  Hou, P.  Roos, and L. Cao.  2015. Plutonium as a tracer for soil erosion assessment in northeast China. Science of the Total Environment. 51:176-185.
  47. Yamada, M., J. Zheng, and Z. Wang. 2006. 137Cs, 239-240Pu and 240Pu/239Pu atom ratios in the surface waters of the western North Pacific Ocean, eastern Indian Ocean and their adjacent seas. Science of the Total Environment. 366: 242-252.
  48. Zapata, F., and M.L. Nguyen. 2009. Soil erosion and sedimentation studies using environmental radionuclides. Radioactivity in the Environment. 16: 295-322.
  49. Zhang, K.X., S.M. Pan, Y.H. Xu, L.G. Cao, Y.P. Hao, M.M. Wu, W. Xu, and S. Ren. 2016. Using Pu239 + 240 atmospheric deposition and a simplified mass-balance model to re-estimate the soil erosion rate: a case study of Liaodong Bay in China. Journal of Radioanalytical and Nuclear Chemistry. 307(1): 599-604.