بررسی تأثیر کاربرد نانوکودهای عناصر غذایی کم‌مصرف در تغذیه گیاهان

نوع مقاله: علمی ترویجی

نویسندگان

1 دانشجوی دکتری گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز، آذربایجان شرقی، ایران

2 دانشیار گروه علوم و مهندسی خاک دانشکده کشاورزی دانشگاه تبریز، آذربایجان شرقی، ایران

چکیده

افزایش روزافزاون جمعیت انسانی و نیاز به غذای بیش‌تر از یک سو و کاهش وسعت خاک­های قابل‌کشت و حاصلخیزی آنها از سوی دیگر بشر را به کاربرد کودهای شیمیایی بیش‌تر سوق داده است. فراهمی عناصر غذایی کم‌­مصرف در برخی خاک­های آهکی دنیا با pH قلیایی، مقدار ماده آلی کم (شرایط بیش‌تر خاک­های ایران) و یا درشت بافت، کم است. محققان تلاش می­کنند تا با استفاده از فناوری­های نوین موجب افزایش کارایی مصرف عناصر غذایی کم‌مصرف و کاهش مقدار مصرف کودهای آنها برای کاهش هزینه­ها و کاهش آلودگی محیط زیست شوند. در این راستا نانوفناوری توانسته با تغییر ویژگی­های کودها، محققان را برای رسیدن به کودهایی با کارایی مصرف بیش‌تر و در نتیجه کاهش مقدار مصرف آنها و کاهش خطرات زیست­محیطی، امیدوار کند. نانومواد شامل موادی است که حداقل در یک بعد اندازه­ای کوچک­تر 100 نانومتر داشته باشند. نانومواد مختلفی به‌عنوان کود برای گیاهان مورد استفاده قرار گرفته­اند که بیش‌تر آنها در گلخانه و در بسترهای کشت مصنوعی بوده است. اثرات مثبت نانوکودهای آهن، روی، منگنز، مس و مولیبدن بر شاخص­های رشد گیاهان گندم، کلزا، سورگوم، انواع لوبیا، خیار، گوجه­فرنگی، بادام زمینی، برخی گیاهان دارویی و غیره گزارش شده است. با این حال، عدم تأثیر و یا اثرات منفی نانوکودها نیز در گزارش‌ها کم نبوده و نباید نادیده گرفته شود. همچنین عواقب ورود حجم عظیمی از این مواد به محیط­زیست از طریق کوددهی مبهم بوده و نتیجه ورود آنها به زنجیره غذایی مورد بحث است. بنابراین، به‌نظر می­رسد دستیابی به یک کود مطلوب نیازمند انجام تحقیقات بیش‌تری می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Effects of nano-micronutrient fertilizersI on plant nutrition

نویسندگان [English]

  • M M 1
  • N N 2
چکیده [English]

  
The limited availability of arable land and the declining soilfertility have led to an increasing application of chemical fertilizers to respond to the increasing demand for more food by the growing population. Micronutrients are essential for plant growth, albeit in small amounts. However, these elements are rarely present in some of the calcareous soils across the world, or in those with an alkaline pH, a low organic matter content (i.e., the conditions of most soils in Iran), or a coarse texture. Researchers have been directing their efforts on enhancing micronutrient utilization efficiency by using new technologies to reduce fertilizer application and to decrease, there by, farm costs and environmental pollution. Along these lines, nanotechnology has been successfully exploited to produce nanofertilizers (materials typically smaller than 100 nm at least in one dimension)for plant nutrition, mostlyin greenhouse, and in vitro applications. The positive effects of nano-fertilizers of iron, zinc, manganese, copper, and molybdenum as a new generation of fertilizers have been reported on the growth indices of wheat, canola, sorghum, beans, cucumbers, tomatoes, peanuts, and some medicinal plants, among others. Despite all this, there is no shortage of reports on lack of or negative effects of nano-fertilizers. Moreover, there is only scant knowledge presently available on the likely consequences of introducing large amounts of these substances into the environment and the food chain. Thus, production of safe and useful nanofertilizers seems to await more in-depth research.

کلیدواژه‌ها [English]

  • Nanofertilizer
  • Micronutrients
  • Plant nutrition
  1. بازرگان ک، متین­فر م، حسین­زاده ح، داودی م ح. 1391. ضرورت تدوین «قانون کود» و «استانداردهای ملی» در راستای ساماندهی مدیریت امرو کود در ایران. مجله پژوهش­های خاک 26 (3): 225-219.
  2. برقی ع، قلیپوری ع، توبه ا، جهان­بخش س و جماعتی ش (1393) بررسی اثر محلولپاشی نانو اکسید آهن بر جذب عناصر غذایی در غده سیب زمینی. مجله علمی پژوهشی اکوفیزیولوژی گیاهی. جلد 16: 12-1.
  3. بقایی م و ملکی­فراهانی س (1392) ارزیابی مقایسه کود کلات آهن با بنیان­های نانو و میکرو بر عملکرد کمی و تخصیص مواد فتوسنتزی زعفران زراعی (Crocus sativus L.). نشریه پژوهش­های زعفران. جلد 2: 169-156.
  4. بیاتی ف، آینه­بند ا و فاتح ا (1393) بررسی تأثیر مقادیر و زمان­های کابرد کود آهن نانو بر عملکرد و اجزای عملکرد کلزا (Brassica napus L.).نشریه پژوهش­های زراعی ایران. جلد 12، شماره 4: 812-805.
  5. پیوندی م، کمالی­جامکانی ز و میرزا م (1390) تأثیر نانوکلات آهن با کلات آهن بر رشد و فعالیت آنزیم های آنتی اکسیدان مرزه (Satureja hortensis). مجله تازه­های بیوتکنولوژی سلولی- مولکولی. جلد 2، شماره 5: 32-25.
  6. پیوندی م، پرنده ه و میرزا م (1394) مقایسه اثر نانوکود و کود کلات آهن برکمیت و کیفیت اسانس ریحان (Ocimum basilicum L.). تحقیقات گیاهان دارویی و معطر ایران. جلد 31، شماره 2: 193-185.
  7. توفیقی ح و نجفی ن (1380) بررسی تغییرات بازیافت و قابلیت استفاده روی خاک و روی اضافه شده به خاک در شرایط غرقابی و غیرغرقابی در خاک‌های شالیزاری شمال ایران.مجموعه مقالات هفتمین کنگره علوم خاک ایران، 7-4 شهریور ماه، دانشگاه شهرکرد، شهرکرد، ایران.
  8. سید­شریفی ر، کمری ح و نجفی ق (1394) تأثیر تنش شوری و تغذیه برگی با نانو اکسید روی بر عملکرد و برخی خصوصیات مورفوفیزیولوژیکی جو (Hordeum vulgare L..). نشریه پژوهش­های زراعی ایران. جلد 13، شماره 2: 410-399.
  9. شجاعی ح و مکاریان ح (1393) تأثیرمحلول‌پاشی اکسید روی نانو و غیر نانو بر عملکرد و اجزای عملکرد ماش (Vigna radiata L.) در شرایط تنش خشکی. نشریه پژوهش­های زراعی ایران. جلد 12، شماره 4: 737-727.
  10. کمری ح و سید­شریفی ر (1394) تأثیر تلقیح بذر با باکتری­های محرک رشد و محلول­پاشی با نانو اکسید روی بر عملکرد و سرعت و دوره پر شدن دانه تریتیکاله. علوم و فنون کشت­های گلخانه­ای. جلد 24:  153-141.
  11. محلوجی م، سیدشریفی ر، صدقی م، سبزعلیان م و کمالی م (1393) تأثیر شوری آب آبیاری و محلول­پاشی کودهای نانو و کلات روی بر مؤلفه­های فتوسنتزی ژنوتیپ­های جو. نشریه تولید گیاهان زراعی. جلد 7، شماره 4: 60-41.
  12. مظاهری­نیا س، آستارایی ع، منشی ا و  فتوت ا (1390) مقایسه مقدار جذب و تجمع آهن درگندم (Triticum aestivum L.) با کاربرد اکسیدهای آهن معمولی و نانو همراه با کود کمپوست زباله شهری گرانوله گوگردی. نشریه زراعت. جلد 92: 111-103.
  13. مظاهری­نیا س، آستارایی ع، منشی ا و  فتوت ا (1391) مقایسه اثر اکسیدهای آهن (نانو و معمولی) همراه با کمپوست زباله شهری بر تغذیه گیاه گندم. نشریه زراعت. جلد 96: 974-960.
  14. ملکی­فراهانی س و عقیقی­شاهوردی م (1394) بررسی تأثیر کاربرد نانوکود آهن در مقایسه با کلات آن بر عملکرد کمی و کیفی زعفران زراعی (Crocus sati). به زراعی کشاورزی. جلد 17، شماره 1: 168-155.
    1. Valeria A, Karin A, Maria A, Hans B, Filipa BM, Puck B, Stefania G, Hans JPM, Agnieszka M, Laia QP, Hubert R, Reinhilde S, Maria VV, Stefan W, Ruud JP (2015) Regulatory aspects of nanotechnology in the agri/feed/food sector in EU and non-EU countries. Regulatory Toxicology and Pharmacology. 73: 463-476. Asadzade N, Moosavi SG, Seghatoleslam MJ (2015) Effect of low irrigation and Zn and SiO2 Nano-fertilizers and Conventional Fertilizers on Morphophysiological traits and seed yield of Sunflower. Biological Forum – An International Journal. 7(1): 357-364.
    2. Biswas PP, Sharma SP (2008) Nutrient management – challenges and options. Journal of the Indian Society of Soil Science 56:22–25.
    3. Burman U, Saini M, Kumar P (2013) Effect of zinc oxide nanoparticles on growth and antioxidant system of chickpea seedlings. Toxicological and Environmental Chemistry 95:605–616
    4. Bystrzejewska-Piotrowska G, Asztemborska M, Steborowski R, Polkowska-Motrenko H, Danko B, Ryniewicz J (2012) Application of neutron activaton for investigation of Fe3O4 nanoparticles accumulation by plants.  Nukleonika 57 (3): 427–430.
    5. Carpita, N, Sabulase D, Montezinos D, Delmer DP (1979) Determination of the pore size of cell walls of living plant cells. Science 205:144–147.
    6. Chahal, AS, Madgulkar AR, Kshirsagar SJ, Bhalekar MR, Dikpati A, Gawli P (2012) Amorphous nanoparticles for solubility enhancement. Journal of Advanced Pharmaceutical Science 2:167–178.
    7. Delfani M, Firouzabadi MB, Farrokhi N, Makarian H (2014) Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis 45: 530–540.
    8. DeRosa MC, Monreal C, Schnitzer M, Walsh R, Sultan Y (2010) Nanotechnology in fertilizers. Nature Nanotechnology 5:91.
    9. Dourado MN, Martins PF, Quecine MC, Piotto FA, Souza LA, Franco MR, Tezotto T, Azevedo RA (2013) Burkholderia sp. SCMS54 reduces cadmium toxicity and promotes growth in tomato.  Annals of Applied Biology 163 (3): 494–507.
    10. Dubey VS, Bhalla R, Luthra R (2003) Sucrose mobilization in relation to essential oil biogenesis during palmarosa (Cymbopogon martinii Roxb. Wats. var. motia) inflorescence development. Journal of Biosciences 28(4):479-487.
    11. Eichert T, Kurtz A, Steiner U, Goldbach HE (2008) Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water‐suspended nanoparticles. Plant physiology 134:151–160.
    12. Eichert T, Goldbach HE (2008) Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – further evidence for a stomatal pathway. Plant physiology 132:491–502.
    13. El-Kereti MA, El-Feky SA, Khater MS, Osman YA, El-Sherbini SA (2014) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Recent patents on food, nutrition & agriculture 5:69–81.
    14. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nature Geoscience 1, 636–639.
    15. Fageria NK (2009) Use of Nutrients in Crop Plants. CRC Press, Boca Raton, Florida.
    16. FAO (Food and Agriculture Organization of the United Nations) (2009) How to feed the world in 2050. Proceedings of the Expert Meeting on How to Feed the World in 2050. 24–26 June 2009. FAO Headquarters, Rome.
    17. Fleischer A, O’Neill MA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant physiology 121:829–838
    18. Ghafariyan MH, Malakouti MJ, Dadpour MR, Stroeve P, Mahmoudi M (2013) Effects of magnetite nanoparticles on soybean chlorophyll. Environmental Science and Technology 47, 10645–10652.
    19. Gonzalez-Melendi P, Fernandez-Pacheco R, Coronado MJ, Corredor E, Testillano PS, Risueno MC, Marquina C, Ibarra MR, Rubiales D, Perezde- Luque A (2008) Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues. Annals of Botany 101 (1): 187–195.
    20. Harsinia MG, Habibib H, Talaei GH (2014) Study the effects of iron nano chelated fertilizers foliar application on yield and yield components of new line of wheat cold region of kermanshah provence. Agricultural Advances 3(4): 95-102.
    21. Hernandez-Viezcas JA, Castillo-Michel H, Servin AD, Peralta-Videa JR, Gardea-Torresdey JL (2011) Spectroscopic verification of zinc absorption and distribution in the desert plant Prosopis juliflora-velutina (velvet mesquite) treated with ZnO nanoparticles. Chemical Engineering Journal 170 (1-3): 346–352.
    22. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station Publications. 347, 1–32.
      1. Hokmabadi H, Haidarinezad A, Barfeie R, Nazaran M, Ashtian M, Abotalebi A (2006) A new iron chelate introduction and their effects on photosynthesis activity, chlorophyll content and nutrients uptake of pistachio (Pistacia vera L.). 27th International Horticultural Congress and Exhibition. Seoul, Korea. August, 13-19.
      2. Hong J, Wang L, Sun Y, Zhao L, Niu G, Tan W, Ricod CM, Peralta-Videa JR, Gardea-Torresdey JL (2015) Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. Science of the Total Environment (in press).
      3. Javadimoghadam A, Ladan Moghadam A, Danaee E (2015) Response of Growth and Yield of Cucumber Plants (Cucumis sativus L.) to Different Foliar Applications of Nano- Iron and Zinc. International Research Journal of Applied and Basic Sciences 9 (9): 1477-1478.
      4. Khater MS (2015) Magnetite- Nanoparticles Effects on Growth and essential oil of Peppermint. Current Science International 4(2): 2077-4435.
      5. Lal R (2008) Soils and India’s food security. Journal of the Indian Society of Soil Science 56:129–138.
      6. Lee W, An YJ, Yoon H, Kweon HS (2008) Toxicity and bioavailability of copper nanoparticles to the terrestrial plants mung bean (Phaseolus radiatus) and wheat (Triticum aestivum): plant agar test for water-insoluble nanoparticles. Environmental Toxicology and Chemistry 27:1915–1921.
      7. Li F, Pham H, Anderson DJ (2010) Methods to produce polymer nanoparticles and formulations of agricultural active ingredients. WO 2010035118.
      8. Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution150 (2): 243–250.
      9. Lin D, Xing B (2008) Root Uptake and Phytotoxicity of ZnO Nanoparticles.  Environmental Science and Technology 42 (15): 5580–5585.
      10. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Scientific Reports 4, 5686–5691.
      11. Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Science of the Total Environment 514: 131–139.
      12. Lopez-Moreno ML, de la Rosa G, Hernandez-Viezcas JA, Castillo-Michel H, Botez CE, Peralta- Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental Science and Technology 44:7315–7320.
      13. Mahajan P, Dhoke SK, Khanna AS (2011) Effect of nano-ZnO particle suspension on growth of mung (Vigna radiata) and gram (Cicer arietinum) seedlings using plant agar method. Journal of Nanotechnology 2011:1–7.
      14. Manjili MJ, Bidarigh S, Amiri E (2014) Study the Effect of Foliar Application of Nano Chelate Molybdenum Fertilizer on the Yield and Yield Components of Peanut. Biological Forum – An International Journal 6(2): 37-40.
      15. Marusenko Y, Shipp J, Hamilton GA, Morgan JLL, Keebaugh M, Hill H, Dutta A, Zhuo X, Upadhyay N, Hutchings J, Herckes P, Anbar AD, Shock E, Hartnett HE (2013) Bioavailability of nanoparticulate hematite to Arabidopsis thaliana. Environmental Pollution 174: 150–156.
      16. Mastronardi E, Tsae P, Zhang X, Monreal C, DeRosa MC (2015) Strategic Role of Nanotechnology in Fertilizers: Potential and Limitations. Nanotechnologies in Food and Agriculture. Rai, M., N. Duran, C. Ribeiro, L. Mattoso. Springer Cham Heidelberg New York Dordrecht London. Springer International Publishing Switzerland.
      17. Monica RC, Cremonini R (2009)  Nanoparticles and higher plants. Caryologia, 62: 161-165.
      18. Musante C, White JC (2012) Toxicity of silver and copper to Cucurbita pepo: differential effects of nano and bulk-size particles. Environmental Toxicology 27, 510–517.
      19. Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Science 179:154–163
      20. Nekrasova GF, Ushakova OS, Ermakov AE, Uimin MA, Byzov IV (2011) Effects of copper(II) ions and copper oxide nanoparticles on Elodea densa Planch. Russian Journal of Ecology 42, 458–463.
      21. Pandey AC, Sanjay SS, Yadav RS (2010) Application of ZnO nanoparticles in influencing the growth rate of Cicer arietinum. Journal of Experimental Nanoscience 5:488–497.
      22. Pandey N, Pathak GC, Sharma CP (2006) Zinc is critically required for pollen function and fertilization in lentil. Journal of Trace Elements in Medicine and Biology 20: 89-96.
      23. Pereira GJG, Molina SMG, Lea PJ, Azevedo RA (2002) Activity of antioxidant enzymes in response to cadmium in Crotalaria juncea.  Plant and Soil 239 (1): 123–132.
      24. Pradhan S, Patra P, Das S, Chandra S, Mitra S, Dey KK (2013) Photochemical modulation of biosafe manganese nanoparticles on Vigna radiata: a detailed molecular, biochemical, and biophysical study. Environmental Science and Technology 47: 13122–13131.
      25. Prasad TNVKV, Sudhakar P, Sreenivasulu Y, Latha P, Munaswamy V, Reddy KR, Sreeprasad TS, Sajanlal PR, Pradeep T (2012) Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35 (6): 905–927.
      26. Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea- Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain.  Journal of Agricultural and Food Chemistry 59(8): 3485–3498.
      27. Shah V, Belozerova I (2009) Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water, Air, & Soil Pollution 197:143–148.
      28. Singh NB, Amist N, Yadav K, Singh D, Pandey JK, Singh SC (2013) Zinc oxide nanoparticles as fertilizer for the germination, growth and metabolism of vegetable crops. Journal of Nanoengineering and Nanomanufacturing 3:353–364.
      29. Stampoulis D, Sinha SK, White JC (2009) Assay-dependent phytotoxicity of nanoparticles to plants. Environmental Science and Technology 43, 9473–9479.
      30. Subramanian KS, Manikandan A, Thirunavukkarasu M, Sharmila Rahale C (2015) Nano-fertilizers for Balanced Crop Nutrition. Nanotechnologies in Food and Agriculture. Rai M, Duran N, Ribeiro C, Mattoso L. Springer Cham Heidelberg New York Dordrecht London. Springer International Publishing Switzerland.
      31. Taran NY, Gonchar OM, Lopatko KG, Batsmanova LM, M PatykaV, Volkogon MV (2014) The effect of colloidal solution of molybdenum nanoparticles on the microbial composition in rhizosphere of Cicer arietinum L. Nanoscale Research Letters 9, 289.
      32. UN (United Nations Department of Economic and Social Affairs, Population Division) (2013) World Population Prospects: the 2012 Revision.
      33. Vitoria AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues.  Phytochemistry 57 (5): 701–710.
      34. Watts-Williams SJ, Turney TW, Patti AF, Cavagnaro TR (2014) Uptake of zinc and phosphorus by plants is affected by zinc fertiliser material and arbuscular mycorrhizas. Plant and Soil 376:165–175.
      35. Zambryski P (2004) Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. Journal of Cell Biology 162:165–168.
      36. Zhao L, Peralta-Videa JR, Rico CM, Hernandez-Viezcas JA, Sun Y, Niu G, Servin A, Nunez JE, Duarte-Gardea M, Gardea-Torresdey JL (2014) CeO2 and ZnO nanoparticles change the nutritional qualities of cucumber (Cucumis sativus). Journal of Agricultural and Food Chemistry 62:2752–2759.
      37. Zhao L, Sun Y, Hernandez-Viezcas JA, Servin AD, Hong J, Niu G, Peralta-Videa JR, Duarte-Gardea M, Gardea-Torresdey JL (2013) Influence of CeO2 and ZnO nanoparticles on cucumber physiological markers and bioaccumulation of Ce and Zn: a life cycle study.  Journal of Agricultural and Food Chemistry 61 (49): 11945–11951.